74 research outputs found

    Popular Matchings in Complete Graphs

    Get PDF
    Our input is a complete graph G=(V,E)G = (V,E) on nn vertices where each vertex has a strict ranking of all other vertices in GG. Our goal is to construct a matching in GG that is popular. A matching MM is popular if MM does not lose a head-to-head election against any matching MM', where each vertex casts a vote for the matching in {M,M}\{M,M'\} where it gets assigned a better partner. The popular matching problem is to decide whether a popular matching exists or not. The popular matching problem in GG is easy to solve for odd nn. Surprisingly, the problem becomes NP-hard for even nn, as we show here.Comment: Appeared at FSTTCS 201

    Popular Matchings

    Get PDF

    Popular edges and dominant matchings = Népszerű élek és domináns párosítások

    Get PDF

    Popular Matchings in Complete Graphs = Népszerű párosítások teljes gráfokban

    Get PDF

    Popular matchings with weighted voters

    Full text link
    In the Popular Matching problem, we are given a bipartite graph G=(AB,E)G = (A \cup B, E) and for each vertex vABv\in A\cup B, strict preferences over the neighbors of vv. Given two matchings MM and MM', matching MM is more popular than MM' if the number of vertices preferring MM to MM' is larger than the number of vertices preferring MM' to MM. A matching MM is called popular if there is no matching MM' that is more popular than MM. We consider a natural generalization of Popular Matching where every vertex has a weight. Then, we call a matching MM more popular than matching MM' if the weight of vertices preferring MM to MM' is larger than the weight of vertices preferring MM' to MM. For this case, we show that it is NP-hard to find a popular matching. Our main result its a polynomial-time algorithm that delivers a popular matching or a proof for it non-existence in instances where all vertices on one side have weight c>3c > 3 and all vertices on the other side have weight 1

    Matchings with lower quotas: Algorithms and complexity

    Get PDF
    We study a natural generalization of the maximum weight many-to-one matching problem. We are given an undirected bipartite graph G=(A∪˙P,E)G=(A∪˙P,E) with weights on the edges in E, and with lower and upper quotas on the vertices in P. We seek a maximum weight many-to-one matching satisfying two sets of constraints: vertices in A are incident to at most one matching edge, while vertices in P are either unmatched or they are incident to a number of matching edges between their lower and upper quota. This problem, which we call maximum weight many-to-one matching with lower and upper quotas (WMLQ), has applications to the assignment of students to projects within university courses, where there are constraints on the minimum and maximum numbers of students that must be assigned to each project. In this paper, we provide a comprehensive analysis of the complexity of WMLQ from the viewpoints of classical polynomial time algorithms, fixed-parameter tractability, as well as approximability. We draw the line between NPNP-hard and polynomially tractable instances in terms of degree and quota constraints and provide efficient algorithms to solve the tractable ones. We further show that the problem can be solved in polynomial time for instances with bounded treewidth; however, the corresponding runtime is exponential in the treewidth with the maximum upper quota umaxumax as basis, and we prove that this dependence is necessary unless FPT=W[1]FPT=W[1]. The approximability of WMLQ is also discussed: we present an approximation algorithm for the general case with performance guarantee umax+1umax+1, which is asymptotically best possible unless P=NPP=NP. Finally, we elaborate on how most of our positive results carry over to matchings in arbitrary graphs with lower quotas

    Computational complexity of kk-stable matchings

    Full text link
    We study deviations by a group of agents in the three main types of matching markets: the house allocation, the marriage, and the roommates models. For a given instance, we call a matching kk-stable if no other matching exists that is more beneficial to at least kk out of the nn agents. The concept generalizes the recently studied majority stability. We prove that whereas the verification of kk-stability for a given matching is polynomial-time solvable in all three models, the complexity of deciding whether a kk-stable matching exists depends on kn\frac{k}{n} and is characteristic to each model.Comment: SAGT 202
    corecore